

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

October/November 2021

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

1 (a)	Give full details of the geometrical transformation in the <i>x</i> - <i>y</i> plane represented by the matrix $\begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.
Let	$\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 2 & 2 \end{pmatrix}.$
(b)	The triangle DEF in the x - y plane is transformed by \mathbf{A} onto triangle PQR .
	Given that the area of triangle DEF is $13 \mathrm{cm}^2$, find the area of triangle PQR .
(c)	Find the matrix B such that $\mathbf{AB} = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$. [2]
(d)	Show that the origin is the only invariant point of the transformation in the x - y plane represented by \mathbf{A} .

Prove by mathematical in	nduction that, for all positive integers n ,	
•	$\frac{\mathrm{d}^n y}{\mathrm{d}x^n} = \left(a^n x + na^{n-1}\right) \mathrm{e}^{ax}.$	[4

3	Let $S_n = \sum_{r=1}^n \ln \frac{r(r+2)}{(r+1)^2}$.

Using the method of differences, or otherwise, show that $S_n = \ln \frac{n+2}{2(n+1)}$.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Let
$$S = \sum_{r=1}^{\infty} \ln \frac{r(r+2)}{(r+1)^2}$$
.

b)	Find the least value of n such that $S_n - S < 0.01$.	[3]

(a)	Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	[2]
(b)	Show that $\alpha^3 + \beta^3 + \gamma^3 = 1$.	[2]

(c)	Use standard results from the list of formulae (MF19) to show that	
	$\sum_{r=1}^{n} \left((\alpha + r)^{3} + (\beta + r)^{3} + (\gamma + r)^{3} \right) = n + \frac{1}{4}n(n+1)\left(an^{2} + bn + c\right),$	
	where a , b and c are constants to be determined.	[6]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

5 The curve C has polar equation $r = 3 + 2\sin\theta$, for $-\pi < \theta \le \pi$.

The straight line *l* has polar equation $r \sin \theta = 2$.

(b)	Add l to the diagram in part (a) and find the polar coordinates of the points of intersection of C and l . [5]

Find the area of R , giving years	our answer in exac	ct form.		[
			•••••	
			•••••	
			•••••	
				•••••
		•••••••••	•••••	••••••
		•••••••	•••••	•••••
			•••••	
			•••••	

	curve C has equation $y = \frac{x^2}{x-3}$.	
(a)	Find the equations of the asymptotes of C .	[3
(b)	Show that there is no point on C for which $0 < y < 12$.	[4

(c) Sketch *C*. [2]

(d) (i) Sketch the graphs of $y = \left| \frac{x^2}{x-3} \right|$ and y = |x| - 3 on a single diagram, stating the coordinates of the intersections with the axes. [4]

(ii) Use your sketch to find the set of values of c for which $\left|\frac{x^2}{x-3}\right| \le |x| + c$ has no solution. [1]

7 The points A, B, C have position vect

$$2\mathbf{i} + 2\mathbf{j}$$
, $-\mathbf{j} + \mathbf{k}$ and $2\mathbf{i} + \mathbf{j} - 7\mathbf{k}$

respectively, relative to the origin O.

Find an equa	ation of the plane <i>OAB</i> , giving your a	answer in the form $\mathbf{r.n} = p$.	
plane Π has	equation $x - 3y - 2z = 1$.		
	pendicular distance of Π from the or	rigin.	
r		-8	
			•••••
			••••••

(c)	Find the acute angle between the planes OAB and II .	[3]
(d)	Find an equation for the common perpendicular to the lines <i>OC</i> and <i>AB</i> .	[10]

•••••••••	•••••	•••••	
 			•••••
 		•••••	
			••••••
 			••••••
 •••••		•••••	
••••••	••••••	•••••	••••••
•••••	•••••	•••••	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.